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Abstract: Fractal image compression through IFS is very important for the efficient transmission and storage of digital 

data. Fractal is made up of the union of several copies of itself   and IFS is defined by a finite number of affine 

transformation  which characterized by Translation, scaling, shearing and rotat ion. In this paper we describe the 

necessary conditions to form an Iterated Function System and how fractals are generated through affine 

transformations. 
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1. INTRODUCTION 

 

The exploration of fractal geometry is usually traced back 

to the publication of the book “The Fractal Geometry of 

Nature” [1] by the IBM mathematician Benoit B. 

Mandelbrot. Iterated Function System is a method of 

constructing fractals, which consists of a set of maps that 

explicitly list the similarities of the shape. Though the 

formal name Iterated Function Systems or IFS was coined 

by Barnsley and Demko [2] in 1985, the basic concept is 

usually attributed to Hutchinson [3]. These methods are 

useful tools to build fractals and other similar sets. 
Barnsley et al, 1986 [4] stated their inverse problem: given 

an object, and an iterated function system that represents 

that object within a given degree of accuracy. The collage 

theorem provided the first stepping stone toward solving 

the inverse problem. However Vrscay [5] have traced the 

idea back to Williams [6], who studied fixed points of 

infinite composition of contractive maps.  

 

2. MATHEMATICAL PRELIMINARIES 

 

An Iterated Function Systems is a set of contraction 

mappings W = {w1 , w2 , . . . wn} acting on a spaceX. 

Associated with this set of mappingsW, is a set of 

probabilitiesP = {P1 , P2 , . . . , Pn}. As we will see, these 

probabilities are used to generate a random walk in the 

spaceX. If we start with any point in X and apply these 

maps iteratively, we will come arbitrarily close to a set of 

points A in X called the attractor of the IFS. These 

attractors are very often fractal (for the most part, we will 

assume attractors are fractal sets, and thus, use the words 
interchangeably). This forms the basis for creating an 

algorithm that will approximate the attractor of IFS. We 

sometime call sets {Wk(A)} whose limits are fractals, pre-

fractals. These are sets the algorithm will be able to 

generate. Increasing the number of times we apply the 

maps will give us a more accurate picture of what the 

attractor looks like. Creating Fractals using Iterated 

Function Systems. 

In order to understand what iterated function systems are 

and why the random iteration algorithm works, we need to 

be familiar with some mathematical concepts. A space X is 
simply a set of elements (points).  

 

 

Metric Spaces definition: A space X with a real-valued 

function d: X ×  X → ℜ is called a metric space (X, d) if d 

possess the following properties:  
 

1. d(x, y)  ≥  0 for ∀ x, y ∈  X  
2. d(x, y)  =  d(y, x) ∀ x, y ∈  X  
3. d x, y ≤  d x, z +  d z, y ∀ x, y, z ∈  X . (triangle 

inequality). 

 For instance, ℜ with d =  |x − y| is a metric space. ℜ2 

with the usual euclidian distance is also a metric space.  

 

Open Sets definition: A subset S of the metric space 

(X, d) is open if, for each point x ∈  S , we can find a 

r >  0 so that {y ∈  X ∶  d(x, y)  <  r } is contained in S.  

 

Closed Sets definition: A subset S of the metric space 

(X, d) is closed if, whenever a sequence  xn   contained in 

S converges to a limit x ∈ X, then in fact this limit x ∈ S.  

 

Bounded Sets definition: A subset S of the metric space 

(X, d) is bounded if we can find an x ∈  X and an M ∈
ℜ >  0 so that d(a, x)  ≤  M ∀ a ∈  S.  
 

Cauchy Sequence definition: A sequence {xn} in X is 

called a Cauchy sequence if given ε >  0, we can find an 

N ∈ Ν >  0 such that d(xn , xm ) >  Ν  

Note: A cauchy sequence need not have a limit in X. This 

stimulate the next definition.  

 

Complete Metric Space definition: A metric space (X, d) 

is complete if every Cauchy sequences in X converges in 

X.  

 

Compact Sets definition: A subset S of the metric space 

(X, d) is compact if every sequences in S has a 

subsequence which converges inS. Since we are mostly 
concerned with metric spaces where the underlying space 

is ℜn  or Cn , we can state the following:  

 

Theorem: If a subset S ⊂  ℜn  (orCn) is closed and 

bounded, then it is compact. Now that we know what a 

compact set is, we can define the following space: 
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Definition: Let X be a complete metric space.Then H(X) 

consists of the non-empty compact subsets of X. To make 

H(X) into a metric space, we must find a real valued 

function h ∶  H(X) x H(X)  →  ℜ with the properties 

enumerated before. To construct this metric, we need to 

know what a δ-parallel body Aδ of a set A is:  

 

Definition: Let (X, d) be a complete metric space and 

H(X) denoting the space whose points are the compact 

subsets of X known as Hausdroff space, other than the 

empty set. Let x, y ∈  X and let A, B ∈  H(X). Then 
 

(1) distance from the point x to the set B is defined as 

d(x, B)  =  min{d(x, y) ∶  y ∈  B}, 
 

(2) distance from the set A to the set B is defined as 

d(A, B)  =  max{d(x, B) ∶  x ∈  A}, 
 

(3) Hausdroff distance from the set A to the set B is 

defined as 
h(A, B)  =  d(A, B)  ∨  d(B, A). 

 

Then the function h(d) is the metric defined on the space 

H X . 
 

Contraction Mappings definition: Let S: X → X be a 

transformation on the metric space(X, d). S is a contraction 

if ∃ s ∈  ℜwith 0 ≤  s <  1 such that d(S(x), S(y))  ≤
 sd(x, y) ∀ x, y ∈  X. Any such number s is called a 

contractivity factor of S. The following theorem will be 

very important for later on.  

 

Contraction Theorem: Let S: X → X be a contraction on 

a complete metric space (X,d). Then S possess exactly one 

fixed point x∗  ∈  X and moreover for any point x ∈ X, the 

sequence {S n(x): n =  0,1,2. . . . . } converges to x∗. That 

is, limn→∞ Sn(x)  =  x ∗, for each x ∈  X 

 
3. ITERATED FUNCTION SYSTEMS 

 

Definition: A (hyperbolic) iterated function system 

consists of a complete metric space (X, d) together with a 

finite set of contraction mappings wn ∶  X →  X, with 

respective contractivity factor sn, forn =  1,2, . . . . N. The 

abbreviation "IFS" is used for "iterated function systems". 

The notation for the IFS just announced is {X ; wn ∶  n =
 1,2, . . . N} and its contractivity factor iss =  max{sn ∶
n =  1,2, . . . N}. The following theorem is extremely 

important and suggests an algorithm for computing the 

pre-fractals. 

 

Theorem: Let {X ∶  Tn , n =  1, 2, 3, . . . , N} be an iterated 

function system with contractivity factors. Then the 

transformation W ∶  H(X)  →  H X defined by 
 

W(B)  =  Sn

N

n=1
(B) for all B ∈ H(X)), 

 

is a contraction mapping on the complete metric space 

(H(X), h(d)) with contractivity factors. 

That is 

h(W(B), W(C))  ≤  sh(B, C). 
 

Its unique fixed point, which is also called an attractor, 

A ∈  H(X), obeys 

A =  W(A)  =  Sn

N

n=1
(A) 

 
and is given by A =  limn→∞Won (B) for any B ∈  H(X). 
Won  denotes the n-fold composition of W. 

 

4. AFFINE TRANSFORMATION 

 

 The use of homogeneous coordinates is the central point 

of affine transformation which allow us to use the 
mathematical properties of matrices to perform 

transformations. So to transform an image, we use a 

matrix 𝑇 ∈ M3(R) providing the changes to apply 

T =  

𝑎11 𝑎12 𝑡𝑥
𝑎21 𝑎22 𝑡𝑦
𝑝𝑥 𝑝𝑦 1

  

 

The vector[𝑇𝑥 , 𝑇𝑦 ] represent the translation vector 

according the canonical vectors. the vector [𝑃𝑥 , 𝑃𝑦 ] 
represents the projection vector on the basis. The square 

matrix composed by the 𝑎𝑖𝑗  elements is the affine 

transformation matrix. 

 

An affine transformation T ∶  R2  →  R2 is a transformation 

of the form T ∶ Ax + B defined by 

T  
x
y
1
 =   

a11 a12

a21 a22

0 0
  

x
y
1
 +  

tx

ty

1

  

 

Where the parameter  a11 , a12 , a21 , a22form the linear part 

which determines the rotation, skew and scaling and the 

parameters tx , ty  are the translation distances in x and y 

directions, respectively. 

 
x′

y′

1

 = T  
x
y
1
 =   

a11 a12 tx

a21 a22 ty

0 0 1

  
x
y
1
  

 

x′ =  x a11 +  y a12  +  tx 

y′ = x a21 +  y a22  +  ty  

 

The general affine transformation can be defined with only 

six parameter: 

 

θ: the rotation angle. 

tx :  the x component of the translation vector. 

ty ∶ the y component of the translation vector. 

Sx : the x component of the scaling vector. 

Sy : the y component of the scaling vector. 

Shx : the x component of the shearing vector. 

Shy :  the y component of the shearing vector. 

 

In the other words, The Fractal is made up of the union of 

several copies of itself, where each copy is transformed by 
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a function Ti, such a function is 2D affine transformation, 
so the IFS is defined by a finite number of affine 

transformation  which characterized by Translation, 

scaling, shearing and rotation. 

 

5. CONCLUSION 

 

In this paper, we have reviewed the basic definitions and 

necessary conditions to generate IFS for fractal image 

compression. We have also discussed about the different 

operation such as translation, transvection, rotation and 

scaling of affine transformation and their effect on fractal 

image compression.  
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